Studies with heteroaromatic amines. A new route to 2-azolylamino-2-thiazolin-4-ones

Khadijah M. AI-Zaydia* Asma AI-Shamary ${ }^{\text {a }}$ and Mohamed H. Elnagdi ${ }^{\text {b }}$
${ }^{\text {a Department of Chemistry, Girl's College of Education, Jeddah, P.O.50918 Jeddah 21533, Kingdom of Saudi Arabia }}$
${ }^{\text {b D Department of Chemistry, Faculty of Science, Cairo University, Giza, A. R. Egypt }}$

Heteroaromatic chloroacetamides 3a-c on treatment with potassium thiocyanate afforded the thiazolylaminothiazolines 6a-c via intermediacy of $\mathbf{4 a - c}$ and $5 \mathbf{5 a - c}$. Compounds 6a-c condensed with dimethylformamide dimethylacetal (DMFDMA) to yield the Z-enamines 7a-c. The enamines 7a and 7b could be converted into the enamines 8a-e and 9a,b on treatment with amines. However, reacting 10c with morpholine afforded 11b. Compounds $\mathbf{9 a}, \mathbf{b}$, as well as $\mathbf{9 c}$, were also obtained on reacting $\mathbf{6 a - c}$ with triethyl orthoformate and piperidine in DMF. The structures of $\mathbf{6 a}$ and 11b were confirmed by X-ray crystal structure determination.

Keywords: 2-thiazolin-4-ones, enamines, DMFDMA, Dimroth rearrangements, crystal structures

The chemistry of heteroaromatic amines is receiving interest as indicated from the number of recent patents and papers dealing with their synthesis and chemistry. ${ }^{1-4}$ As a part of biological chemistry programme in our laboratories, samples of differently substituted azolylamino-2-thiazolin-4-ones were needed for investigation of their antimicrobial activity, in the light of the recently reported activity of 2-thiazolin-4ones as antibacterial agents. ${ }^{5}$ Moreover, enamine derivatives of these products looked potential anticonvulsants in light of anticonvulsant activity recently reported for enaminones. ${ }^{6-10}$ The synthetic approach in Scheme 1 was envisaged. A similar reaction scheme has been employed earlier; ${ }^{11}$ however, the authors did not acknowledge the possibility of Dimroth rearrangement in their reactions.

Results and discussion

In our laboratories treatment of $\mathbf{1 a - c}$ with chloroacetyl chloride (2) afforded the chloroacetyl derivatives 3a-c in almost quantitative yields. With potassium thiocyanate in refluxing acetonitrile these afforded products that could be formulated as 4,5 or $\mathbf{6}$. Structures $\mathbf{4}$ were readily ruled out as IR and ${ }^{13} \mathrm{C}$ NMR indicated absence of signals for SCN (IR $\sim 2200 \mathrm{~cm}^{-1},{ }^{13} \mathrm{C}$ NMR $\sim 120 \mathrm{ppm}$). It was difficult to distinguish between structures 5 and $\mathbf{6}$ on spectral evidence only although it fitted better structures 6. An X-ray crystal structure for the product of reaction of 3a with KSCN was determined (Fig. 1), ${ }^{12}$ confirming structure $\mathbf{6 a}$ for this product. Consequently structures $\mathbf{6 b}, \mathbf{c}$ are assumed for the products of reacting 3b,c with KSCN. Clearly 6 resulted from a Dimroth type rearrangement of $\mathbf{5}$ under the reaction conditions. To our knowledge, this is the first reported rearrangement of this type with N -substituted thiazolidin-4-ones (Scheme 1).
Compounds 6a and $\mathbf{6 b}$ reacted with DMFDMA to yield the enamines $7 \mathbf{a}, \mathbf{b}$ respectively. These reacted with aromatic amines to yield 8a-e. Similar treatment with piperidine afforded $\mathbf{9 a}, \mathbf{b}$. Also, compounds $\mathbf{9 a}, \mathbf{b}$ were obtained when $\mathbf{6 a}$ and $\mathbf{6 b}$ were directly treated with $(\mathrm{EtO})_{3} \mathrm{CH}$ and piperidine in DMF, and the products obtained were found identical with those obtained before (m.p., mixed m.p., TLC). ${ }^{11}$ (Scheme 1). We have recently shown that triethylorthoformate/piperidine in DMF forms piperidyl diethylacetal intermediate (nonisolable) that reacts more efficiently than DMFDMA with active methylene groups to form the final isolable products. ${ }^{12}$

When 6c was similarly treated with DMFDMA, in a general approach to enaminones extensively employed by us in the last 10 years, only $\mathbf{1 0} \mathbf{c}$ was isolated. It seems that the resulting enamine $\mathbf{7 c}$ is methylated by DMFDMA faster than

[^0]

Scheme 1

the reaction of DMFDMA with 6c (Scheme 2). Methylation of heterocycles by DMFDMA has been reported earlier. ${ }^{13}$ To form 9c, compound $\mathbf{6 c}$ was treated with a mixture of $(\mathrm{EtO})_{3} \mathrm{CH}$ and piperidine in DMF. Similarly, compound 10c reacted with piperidine and morpholine to afford $\mathbf{1 1 a}, \mathbf{b}$ and with p-toluidine to yield $\mathbf{1 2}$. The structure of the methylation product 11b was confirmed by X-ray crystal determination (Fig. 2). ${ }^{14}$

Fig. 1 Molecular structure of $\mathbf{6 a}$ with atom labelling scheme.
Similarly $\mathbf{1 3}$ afforded $\mathbf{1 4}$ with chloroacetyl chloride, which is converted into $\mathbf{1 7}$ on treatment with potassium thiocyanate via the intermediacy of $\mathbf{1 5}$ and $\mathbf{1 6}^{15}$ (Scheme 3).

Experimental

All melting points were measured with a Stuart Scientific melting point apparatus. IR spectra were recorded as KBr pellets on a Pye Unicam SP 3-300 Spectrophotometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterated dimethylsulfoxide (DMSO- d_{6}) on a Bruker DPX 400 MHz spectrometer using tetramethylsilane (TMS) as an internal reference; shifts are expressed as δ values. Mass spectra were performed on a Shimadzu GCMS-QP 1000 Ex mass spectrometer at 70 eV . Elemental analyses were carried out at the Microanalytical Centre of Cairo University.
The crystallographic structures were performed on an Enraf Nonius FR 590 diffractometer. The crystals were mounted on a glass fibre. The data were collected at a temperature of $20 \pm 1^{\circ} \mathrm{C}$ using the ω scanning technique to a maximum of 27.12°. The structures were solved by direct methods using SIR 92 and refined by full-matrix least squares. ${ }^{14}$ Non hydrogen bond atoms were refined anisotropically. Hydrogen atoms were located geometrically and were refined isotropically. Full data can be obtained on request from the CCDC. ${ }^{14}$
N-Substituted 2-chloroacetamides (3a-c, 14): The heterocyclic amine ($\mathbf{1 a - c}, \mathbf{1 3})(0.1 \mathrm{~mol})$ was suspended in dry dioxan $(50 \mathrm{ml})$. Chloroacetyl chloride (0.1 mol) and anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.1 \mathrm{~mol})$ were added and the mixture was left at room temperature for 1 h . The reaction mixture then was poured into ice water, the precipitate collected by filtration, and the crude product recrystallised from ethanol.

Fig. 2 Molecular structure of 11b with atom labelling scheme.

12

Scheme 2
2-Chloro-N-(pyridin-2-yl)acetamide (3a): White crystals (84\%), m.p. $123-125^{\circ} \mathrm{C}$. IR: $v_{\max } 3390(\mathrm{OH}), 3224(\mathrm{NH}), 3068(\mathrm{CH}$ aromatic), 2977 (CH aliphatic) and $1675 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 12.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.67(\mathrm{~d}, 1 \mathrm{H}$, pyridine $\mathrm{H}-6), 7.94(\mathrm{dd}, 1 \mathrm{H}$, pyridine $\mathrm{H}-3)$, 7.07 (m. 2 H , pyridine $\mathrm{H}-4, \mathrm{H}-5$), $4.26 \mathrm{ppm}\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. MS: $m / z 170\left(\mathrm{M}^{+}, 14 \%\right)$. Anal. calc. for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 49.28 ; \mathrm{H}, 4.14 ; \mathrm{N}$, 16.42. Found: C, 49.45; H, 4.28; N 16.23\%.

2-Chloro-N-(5-phenyl-1H-pyrazol-3-yl)acetamide (3b): White crystals (52%), m.p. $201-202^{\circ} \mathrm{C}$. IR: $v_{\max } 3299$ (NH), 3221 (NH pyrazole), 3046 (CH aromatic), 2950 (CH aliphatic), $1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR: $\delta 12.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.86(\mathrm{~s}, 1 \mathrm{H}$, pyrazole NH$) 7.41-7.74$ ($\mathrm{m}, 5 \mathrm{H}$, Ar-H), $6.93(\mathrm{~s}, 1 \mathrm{H}$, pyrazole $\mathrm{H}-4), 4.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 164.53(\mathrm{C}=\mathrm{O}), 148.1$ (pyrazole C-3), 142.7 (pyrazole C-5), 125.6, 128.7, 129.5, 129.7 (phenyl carbons), 94.3 (pyrazole C-4), $43.3\left(\mathrm{CH}_{2}\right)$. MS: $m / z 235\left(\mathrm{M}^{+} 42 \%\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}$: C, 56.06 ; H, 4.28 ; N, 17.83. Found: C 56.28 ; H, 4.35 ; N, 17.75%.

N-Benzothiazol-2-yl-2-chloroacetamide (3c): White crystals (99%), m.p. $160^{\circ} \mathrm{C}$. IR: $v_{\max } 3290(\mathrm{NH}), 3050(\mathrm{CH}$ aromatic), 2944 (CH aliphatic) and $1691 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 12.77$ (s, 1H, NH), $7.92 \mathrm{~d}, 7.75 \mathrm{~d}, 7.40 \mathrm{~m}, 7.27 \mathrm{~m}$ (each 1 H , benzothiazole $\mathrm{H}-4, \mathrm{H}-7$, H6, H-5 resp.), 4.47 (s, 2H, $\left.\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 166.5(\mathrm{C}=\mathrm{O}), 158.2$, $148.9,132.0,126.7,124.3,122.2,121.2$ (benzothiazole carbons), $43.13\left(\mathrm{CH}_{2}\right)$. MS: $m / z 226\left(\mathrm{M}^{+}, 18 \%\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}$: C, 47.69; H, 3.11; N, 12.36. Found: C, 47.75; H, 3.33; N, 12.44\%.

2-Chloro-N-(4-oxo-4H-thieno[3,4-c][1]benzopyran-3-yl) acetamide (14): Pale yellow crystals (70\%), m.p. 198-200 ${ }^{\circ} \mathrm{C}$. IR: $v_{\max } 3250(\mathrm{NH}), 3010(\mathrm{CH}$ aromatic), $2958(\mathrm{CH}$ aliphatic), 1701 ($\mathrm{C}=\mathrm{O}$) and $1675 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$ ring). ${ }^{1} \mathrm{H}$ NMR: $\delta 11.39(\mathrm{~s}, 1 \mathrm{H}$, NH), 7.81 (s, 1 H , thienyl), $7.34-8.08(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.73 \mathrm{ppm}(\mathrm{s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 165.5(\mathrm{C}=\mathrm{O}), 159.1(\mathrm{C}-4), 150.6(\mathrm{C}-5 \mathrm{a})$, 149.0 (C-3), 130.7 (C-9b), 130.2 (C-9a), 127.8 (C-7), 125.5 (C-9), 124.67 (C-8), $117,68(\mathrm{C}-6), 117.35(\mathrm{C}-3 \mathrm{a}) 109.82(\mathrm{C}-1), 43.73 \mathrm{ppm}$ $\left(\mathrm{CH}_{2}\right)$. MS: m/z $293\left(\mathrm{M}^{+}, 26 \%\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{3} \mathrm{~S}$: C, 53.16 ; H, 2.75; N, 4.77. Found: C, 53.31 ; H, 2.87; N, 4.91\%.

Thiazol-4(5H)-one derivatives (6a-c, 17): The chloroacetamide $(\mathbf{3 a - c}, \mathbf{1 4})(0.1 \mathrm{~mol})$ and potassium thiocyanate $(0.3 \mathrm{~mol})$ in MeCN $(50 \mathrm{ml})$ was heated to reflux for 3 h . The reaction mixture was cooled and poured into water $(150 \mathrm{ml})$, and after 1 h the crude product was collected by filtration and recrystallised from the indicated solvent.

Scheme 3

2-(Pyridin-2-ylamino)thiazol-4(5H)-one (6a): Dark brown crystals (42%), m.p. $275^{\circ} \mathrm{C}$, from dimethylformamide. IR: $v_{\max } 3200(\mathrm{NH})$, $3050\left(\mathrm{CH}\right.$ aromatic), $2922\left(\mathrm{CH}_{2}\right)$ and $1685 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 11.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.39(\mathrm{~d}, 1 \mathrm{H}$, pyridyl H-6), $7.82(\mathrm{dd}, 1 \mathrm{H}$, pyridyl $\mathrm{H}-3), 7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$, pyridyl $\mathrm{H}-5)$ and $3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. MS: m/z $193\left(\mathrm{M}^{+}, 28 \%\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 49.73$; H, 3.65; N, 21.75. Found: C, 49.55; H, 3.73; N, 21.90\%.

2-(5-Phenyl-lH-pyrazol-3-ylamino)thiazol-4(5H)-one (6b): Dark yellow crystals (88%), m.p. $252^{\circ} \mathrm{C}$, from EtOH/DMF (3: 1). IR: $v_{\max } 3296(\mathrm{NH}), 3220$ (NH pyrazole), 3050 (CH aromatic), 2920 $\left(\mathrm{CH}_{2}\right), 1719 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 13.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.74(\mathrm{~s}$, 1 H , pyrazole NH), 6.99 ($\mathrm{s}, 1 \mathrm{H}$, pyrazole $\mathrm{H}-4$), $7.31-7.75(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 4.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. MS: $m / z 258\left(\mathrm{M}^{+}, 100 \%\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 55.80$; H, 3.90; N, 21.69. Found: C, 55.65 ; H, 3.80; N, 21.53\%.
2-(Benzothiazol-2-ylamino)-thiazol-4(5H)-one (6c): Orange crystals (44\%), m.p $208-210^{\circ} \mathrm{C}$, from ethanol. IR: $v_{\max } 3200(\mathrm{NH})$, $3061\left(\mathrm{CH}\right.$ aromatic), $2966\left(\mathrm{CH}_{2}\right)$ and $1720 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 12.30(\mathrm{~s} .1 \mathrm{H}, \mathrm{NH}), 7.95 \mathrm{~d}, 7.78 \mathrm{~d}, 7.47 \mathrm{~m}, 7.33 \mathrm{~m}$ (each 1 H , benzothiazole H-4, H-7, H-6, H-5 resp.), $4.06 \mathrm{ppm}\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR: $\delta 174.9(\mathrm{C}=\mathrm{O}), 166.7$ (thiazolone $\left.\mathrm{C}-2\right), 169.4,151.4$, 133.6, 126.9, 124.8, 122.8, 121.9 (benzothiazole carbons), 36.1 pmm $\left(\mathrm{CH}_{2}\right) . \mathrm{MS}: m / z 249\left(\mathrm{M}^{+}, 87 \%\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{2}$: C, 48.17; H, 2.83; N, 16.85. Found: C, 48.36; H, 2.60; N, 16.79\%.

2-[(4-Oxo-4H-thieno[3,4-c][1]benzopyran-3-yl)amino]thiazol$4(5 \mathrm{H})$-one (17): Dark yellow crystals (68%) m.p. $240-241^{\circ} \mathrm{C}$, from dioxan. IR: $v_{\max } 3265(\mathrm{NH}), 3020\left(\mathrm{CH}\right.$ aromatic), $2920\left(\mathrm{CH}_{2}\right), 1700$ ($\mathrm{N}-\mathrm{C}=\mathrm{O}$), $1673 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$ ring). ${ }^{1} \mathrm{H}$ NMR: $\delta 11.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.83$ (s, 1 H , thienyl), $7.32-8.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.44 \mathrm{ppm}\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. MS: $m / z 316\left(\mathrm{M}^{+}, 47 \%\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 53.15$; H , 2.55 ; N, 8.85. Found: C, 53.33 ; H, 2.76; N, 8.77\%.

Dimethylaminomethylene thiazolones (7a,b,10c)
Method A : N,N-dimethylformamide dimethylacetal $(0.15 \mathrm{~mol})$ was added to each of $\mathbf{6 a}$ and $\mathbf{6 b}$ and the reaction mixture was refluxed for 1 h . The crude product was collected by filtration, washed with petroleum spirit $60-80^{\circ} \mathrm{C}$ and diethylether, and recrystallised from the indicated solvent.

Method B: A suspension of compound $\mathbf{6 c}(0.1 \mathrm{~mol})$ in dry xylene $(50 \mathrm{ml})$, was treated with N, N-dimethylformamide dimethylacetal $(0.12 \mathrm{~mol})$. The reaction mixture was refluxed for 8 h . The solid products was collected by filtration, washed with petroleum ether $60-80^{\circ} \mathrm{C}$, and crystallised from xylene.
5-Dimethylaminomethylene-2-(pyridin-2-ylamino)thiazol-4(5H)one (7a): Yellow crystals (73%), m.p. $263-265^{\circ} \mathrm{C}$, from ethanol. IR: $v_{\max } 3220(\mathrm{NH}), 3050(\mathrm{CH}$ aromatic, olefinic), $2910(\mathrm{CH}$ aliphatic),
$1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 11.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.37(\mathrm{~d}, 1 \mathrm{H}$, pyridine $\mathrm{H}-6), 7.75$ (dd, 1 H , pyridine $\mathrm{H}-3$), 7.48 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ olefin), 7.03 ($\mathrm{m}, 2 \mathrm{H}$, pyridine $\mathrm{H}-4$ and $\mathrm{H}-5$), $3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right)$, and 3.16 ppm (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}$). MS: $m / z 248\left(\mathrm{M}^{+}, 28 \%\right)$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{OS}$: C, $53.21 ;$ H, 4.87 ; N, 22.56. Found: C, 53,$35 ;$ H, 4.67 ; N, 22.33%.

5-Dimethylaminomethylene-2-(5-phenyl-1H-pyrazol-3-ylamino) thiazol-4(5H)-one (7b): Orange crystals from ethanol/dioxan (3: 1); m.p $248-249^{\circ} \mathrm{C}$; (86%). IR: $v_{\max } 3335(\mathrm{NH}), 3196$ (NH pyrazol), $3100\left(\mathrm{CH}\right.$ aromatic and olefin), $2910\left(\mathrm{CH}\right.$ aliphatic) and $1650 \mathrm{~cm}^{-1}$ (C=O). MS: $m / z 313\left(\mathrm{M}^{+}, 24 \%\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{OS}$: C, 57.49; H, 4.82; N, 22.35. Found: C, 57.60; H, 4.78, N 22.47\%.

2-(Benzothiazol-2-ylimino)-5-dimethylaminomethylene-3-methylthiazolidin-4-one (10c): Dark red crystals (72\%), m.p $204^{\circ} \mathrm{C}$. IR: $v_{\max } 3050(\mathrm{CH}$ aromatic and olefin), 2913 (CH aliphatic) 1678 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 7.87 \mathrm{~d}, 7.47 \mathrm{~d}, 7.38 \mathrm{~m}, 7.25 \mathrm{~m}$ (each 1 H , benzothiazole $4-$, $7-, 6-$, $5-\mathrm{H}$, resp.), 7.64 (s, 1H, CH olefin), 3.69 (s, $3 \mathrm{H}, \mathrm{Me}-\mathrm{N})$ and $3.18 \mathrm{ppm}\left(\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}-\mathrm{N}\right)$. MS: $m / z 318\left(\mathrm{M}^{+}, 19 \%\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}_{2}$: C, 52.81; H, 4.43; N, 17.60. Found: C, 52.68; H, 4.62; N, 17.47\%.

Reaction of $\mathbf{7 a , b}$ and $\mathbf{1 0} \mathbf{c}$ with aromatic amines: The dimethylaminomethylene compound $(\mathbf{7 a , b}, 10 \mathbf{c})(0.1 \mathrm{~mol})$ was heated in acetic acid $(20 \mathrm{ml})$ with aromatic amines $(0.1 \mathrm{~mol})$ for 1 h . The removal of excess for acetic acid under reduced pressure, and the solid was collected by filtration and recrystallised.

5-Phenylaminomethylene-2-(pyridin-2-ylamino)thiazol-4(5H)-one (8a): Pale brown crystals (17%), m.p 294-296 ${ }^{\circ} \mathrm{C}$, from methanol/ dioxan (3: 1). IR: $v_{\max } 3151,3200(2 \mathrm{NH}), 3099(\mathrm{CH}$ aromatic), 3042 (CH, olefin), $1647 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 11.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.76(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{NH}), 8.41(\mathrm{~d}, 1 \mathrm{H}$ pyridine $\mathrm{H}-6), 8.03(\mathrm{~d}, 1 \mathrm{H}$ pyridine $\mathrm{H}-3), 7.93$ (d, 1H, CH olefin), 7.00-7.80 (m, 7H, Ar-H and pyridyl H-4, H-5). MS: $m / z 296\left(\mathrm{M}^{+}, 24 \%\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 60.79$; H , 4.08; N, 18.91. Found: C, 60.93; H, 4.25; N, 18.84\%.

5-[(4-Nitrophenylamino)methylene]-2-(pyridin-2-ylamino)thiazol$4(5 H)$-one ($\mathbf{8 b}$): Dark red crystals (41%) m.p. $283^{\circ} \mathrm{C}$, from ethanol/ dioxan (3: 1). IR: $v_{\max } 3240,3180(2 \mathrm{NH}), 3093(\mathrm{CH}$ aromatic), 3050 (CH , olefin) and $1678 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 11.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $10.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 8.43(\mathrm{~d}, 1 \mathrm{H}$, pyridine $\mathrm{H}-6), 8.15(\mathrm{dd}, 1 \mathrm{H}$, pyridine $\mathrm{H}-3), 7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$ olefin), 7.13-7.84 (m, 6H, Ar-H and pyridine H-4, H-5). MS: $m / z 341\left(\mathrm{M}^{+}, 14 \%\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 52.78; H, 3.25; N, 20.52. Found: C, 52.98; H, 3.05; N, 20.35\%.

2-(Pyridin-2-ylamino)-5-(p-tolylaminomethylene)thiazol-4(5H)one (8c): Yellow crystals (29%), m.p. $296-298^{\circ} \mathrm{C}$, from dioxan. IR: $v_{\max } 3200,3174(2 \mathrm{NH}), 3045(\mathrm{CH}$ aromatic and olefin), $2967(\mathrm{CH}$ aliphatic), $1649 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 11.83$ ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}\right), 9.73$ (d, $1 \mathrm{H}, \mathrm{NH}$), $8.43(\mathrm{~d}, 1 \mathrm{H}$, pyridine $\mathrm{H}-6), 8.08(\mathrm{~d}, 1 \mathrm{H}$, pyridine $\mathrm{H}-3)$, 7.89 (d, 1H, CH olifin), 7.13-7.89 (m, 7H, Ar-H and H-3, H-4, H-5 pyridine), $2.24 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathrm{MS}: m / z 310\left(\mathrm{M}^{+}, 37 \%\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 61.92 ; \mathrm{H}, 4.55 ; \mathrm{N}, 18.05$. Found: C, 61.76; H, 4.35; N, 18.26\%.

5-Phenylaminomethylene-2-(5-phenyl-1H-pyrazol-3-ylamino) thiazol-4(5H)-one (8d): Yellow crystals (44\%) m.p. $>300^{\circ} \mathrm{C}$, from dioxan. IR: $v_{\max } 3220-3278(3 \mathrm{NH}), 3090(\mathrm{CH}$ aromatic and CH olefin), $1624 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. MS: $m / z 361\left(\mathrm{M}^{+}, 82 \%\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{OS}: \mathrm{C}, 63.14 ; \mathrm{H}, 4.18$; $\mathrm{N}, 19.38$. Found: C, 63.36; H, 4.30; N 19.45\%.

2-(5-Phenyl-1H-pyrazol-3-ylamino)-5-(p-tolylaminomethylene) thiazol-4(5H)-one (8e): Orange crystals (26%), m.p. $298-300^{\circ} \mathrm{C}$, from aqueous dimethylformamide (1:1). IR: $v_{\max } 3100-3250(3 \mathrm{NH})$, $3060(\mathrm{CH}$ aromatic), 3024 (CH, olefin), 2986 (CH aliphatic), 1697 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 12.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.64(1 \mathrm{H}, \mathrm{NH}$ pyrazole), 9.57 (d, 1H, NH), 7.77 (d, 1H, CH olefin), 7.10-7.46 (m, 9H. Ar-H), 6.50 (s, pyrazole H-4), 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$). MS: $\mathrm{m} / \mathrm{z} 375\left(\mathrm{M}^{+}, 85 \%\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}: \mathrm{C}, 63.98 ; \mathrm{H}, 4.56 ; \mathrm{N}, 18.65$. Found: C, 63.76; H, 4.32; N, 18.88\%.

2-(Benzothiazol-2-ylimino)-3-methyl-5-(p-tolylaminomethylene)-thiazolidin-4-one (12): Green crystals (29\%), m.p. $120-121^{\circ} \mathrm{C}$, from ethanol. IR: $v_{\max } 3250(\mathrm{NH}), 3055(\mathrm{CH}$ aromatic and olefin), 2921 (CH , aliphatic), $1689 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 9.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$, 7.77 (d, 1H, CH olefin), 7.13-8.16 (m, 8H, Ar-H), 4.06 (s, 3H, N$\left.\mathrm{CH}_{3}\right), 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. MS: m/z $380\left(\mathrm{M}^{+}, 64 \%\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}_{2}$: C, 59.98; H 4.24; N, 14.72. Found: C, 59.77; H, 4.02; N, 14. 94%.

Reaction of $\mathbf{7 a , b}$ and $\mathbf{1 0} \mathbf{c}$ with secondary amines: The dimethylaminomethylene compound $(\mathbf{7 a}, \mathbf{b}, \mathbf{1 0 c})(0.1 \mathrm{~mol})$ in $\mathrm{EtOH}(20 \mathrm{ml})$ was heated for 7 h with the appropriate secondary amine $(0.1 \mathrm{~mol})$. The removal of solvent under reduced pressure yielded the crude product which was collected by filtration and washed with ethanol.

5-Piperidinomethylene-2-(pyridine-2-ylamino)thiazol-4(5H)-one (9a): Orange crystals (10%), m.p. $246^{\circ} \mathrm{C}$, from ethanol. IR: $v_{\max } 3300$ (NH), 3100 (CH aromatic, olefin), $2936\left(\mathrm{CH}_{2}\right), 1663 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR: $\delta 11.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.39(\mathrm{~d}, 1 \mathrm{H}$ pyridine $\mathrm{H}-6), 7.76$ (dd, 1 H pyridine $\mathrm{H}-3$), 7.46 (s, 1H, CH olefin), $7.03(\mathrm{~m}, 2 \mathrm{H}$ pyridine $\mathrm{H}-4, \mathrm{H}-5), 3.50\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{NCH}_{2}\right)$ and $1.59 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 172$ (C=O), 159.6 (thiazole C-2), 156.6 (thiazole C-5), 147.1 (C-2 pyridine), 144.1 (C-6 pyridine), 138.7 (C-4 pyridine), 118.8 (C-5 pyridine), 118.0 (C-3 pyridine), 89.6 (CH olefin), 51.9 (C-2 and C-6 piperidine), 26.40 (C-4 piperidine) and 23.86 (C-3 and C-5 piperidine). MS: $m / z 288\left(\mathrm{M}^{+}, 30 \%\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$: C, 58.31; H, 5.59; N, 19.43. Found: C, 58.17; H, 5.39; N,19.66\%.

2-(5-Phenyl-1H-pyrazol-3-ylamino)-5-piperidinomethylene-thiazol-4(5H)-one (9b): Pale brown crystals (16\%), m.p. $270-271^{\circ} \mathrm{C}$, from ethanol. IR: $v_{\max } 3100-3200(2 \mathrm{NH}), 3050(\mathrm{CH}$ aromatic and olefin), $2933\left(\mathrm{CH}_{2}\right) 1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 13.11$ (s, 1H, NH), 11,33 (s, 1H, pyrazole NH), 7.32-7.73 (m, 6H, Ar-H and CH olefin), 6.41 (s, 1 H pyrazole $\mathrm{H}-4$), $3.45\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{NCH}_{2}\right), 1.58 \mathrm{ppm}$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$. MS: $m / z 353\left(\mathrm{M}^{+}, 35 \%\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}$: C, 61.17; H, 5.42; N, 19.8. Found: C, 61.07; H, 5.33; N, 19.9\%.

2-(Benzothiazol-2-ylamino)-5-piperidinomethylenethiazol-4(5H)one (9c): Orange crystals (70%) m.p. $183-185^{\circ} \mathrm{C}$, from ethanol. IR: $v_{\max } 3350(\mathrm{NH}), 3090\left(\mathrm{CH}\right.$ aromatic and olefin), $2995\left(\mathrm{CH}_{2}\right), 1680$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 12.30(\mathrm{~s} .1 \mathrm{H}, \mathrm{NH}), 7.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ olefin), 7.97-7.30 (m. 4H, Ar-H) 3.50 (m, 4H, 2NCH $)^{2} 1.63 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right) . \mathrm{MS}: m / z 344\left(\mathrm{M}^{+}, 19 \%\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}_{2}$: C , 55.79 ; H, 4.68; N, 16.27. Found: C, 94.84; H, 4.45; N, 16.48%.

2-(Benzothiazol-2-ylimino)-3-methyl-5-piperidinomethylene-thiazolidin-4-one (11a): Pale rose crystals (20\%), m.p. $185^{\circ} \mathrm{C}$, from ethanol. IR: $v_{\max } 3050(\mathrm{CH}$ aromatic, olefin), 2982 (CH aliphatic), $1682 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR: $\delta 7.93 \mathrm{~d}, 7,79 \mathrm{~d}, 7.40$ m, 7.27 m (each 1 H , benzothiazole H-4, H-7, H-6, H-5, resp.), 7.74 (s, $1 \mathrm{H}, \mathrm{CH}$ olefin), $3.58\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{NCH}_{2}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.63$ ppm (m, 6H, $3 \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR: $\delta 169.2(\mathrm{C}=\mathrm{O}), 159.2$ (thiazole C-2), 151.6 (thiazole C-5), 166.9, 145.6, 133.3, 126.6, 124.2, 122.3, 121.6 (benzothiazole carbons), $85.5\left(\mathrm{CH}\right.$ olefin), $30.0\left(\mathrm{CH}_{3}\right), 51.9(\mathrm{C}-2$ and C-6 piperidine), 26.5 (C-4 piperidine) and $23.7 \mathrm{ppm}(\mathrm{C}-3, \mathrm{C}-5$ piperidine). MS: $m / z 358\left(\mathrm{M}^{+}, 84 \%\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}_{2}$: C, 56.96; H, 5.06; N, 15.63. Found: C, 56.73; H, 5.23; N, 15.85\%.

2-(Benzothiazol-2-ylimino)-3-methyl-5-morpholinomethylene-thiazolidin-4-one (11b): Dark red crystals (17\%) m.p. $220^{\circ} \mathrm{C}$, from
ethanol. IR: $v_{\max } 3050(\mathrm{CH}$ aromatic, olefin), 2968 (CH aliphatic), $1685 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. MS: m/z $360\left(\mathrm{M}^{+}, 75 \%\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 53.31; H, 4.47; N, 15.54. Found: C, 53.56; H, 4.63; N, 15.32\%.

Received 16 October 2005; accepted 31 January 2006
Paper 05/3551

References

1 T.M. Abu Elmaati and F.M. El-Taweel, J. Heterocyclic Chem., 2004, 41, 109.

2 M. Avalos, R. Bablano, P. Cintas, F.R. Clemente, R. Gordillo, J.L. Jimenez, J.C. Palacios and P.R. Raithby, J. Org. Chem., 2000, 65, 5089.

3 A.S. Willson, C.R. Sarko and G.P. Roth, Tetrahedron, 2002, 43, 581.
4 E.V. Tretyakov, D.W. Knight and S.F. Vasilevsky J. Chem. Soc., Perkin Trans. 1, 1999, 3721.
5 K. Makino, H.S. Kim and Y. Kurasawa J. Heterocyclic Chem., 1998, 35, 489.

6 M.E. Abdel-Hamid, I.O. Edafiogho and K.R. Scott J. Pharm. Biomed. Anal., 2001, 30, 1001.
7 M.L. Laws, R.R. Roberts, J.M. Nicholson, R. Butcher, J.P. Stables, A.M. Goodwin, C.A. Smith and K.R. Scott, Bioorg. Med. Chem., 1998, 6, 2289.

8 M. Kubicki, H.A.R. Bassyouni and P.W. Codding, J. Mol. Structure, 2000, 525, 141.
9 I.O. Edafiogho, O.A. Phillips, M. Abdel-Hamid, A.A.M. Ali, W.C. Maltowe, A. El-Hashim and S.B. Kombian, Biorg. Med. Chem., 2002, 10, 593.

10 J.E. Foster, J.M. Nicholson, R. Butcher, J.P. Stables, I.O. Edafiogho, A.M. Goodwin, M.C. Henson, C.A. Smith and K.R. Scott, Biorg. Med. Chem., 1999, 7, 2415.
11 R. Lakhan and R. Singh, J. Agric. Food Chem., 1991, 39, 580.
12 A.M. Salaheldin, N.M. Hilmy, H. Fakhry, F. Mohamed and M.H. Elnagdi, (submitted for publication).
13 R.F. Abdulla and R.S. Brinkmeyer, Tetrahedron, 1979, 35, 1675 and references therein
14 Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications nos. CCDC 263071 \& 263072. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving. html (or from the CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK; Fax: + 441223 336033; E-mail: deposit@ccdc.cam.ac.uk)
15 F. Al-Omran, M.M.A. Khalik, H. Al-Awadi and M.H. Elnagdi, Tetrahedron, 1996, 52, 11915.

[^0]: * Correspondent. E-mail: Alzaydi_kh@hotmail.com

